RESEARCH ARTICLE OPEN ACCESS

APPROXIMATION BY PIECEWISE POLYNOMIAL

Dr. KARUN LATA SHUKLA

Email: mishra.mini855@gmail.com

Abstract: There have approach to approximate a given function by means of piecewise polynomial functions. This is because polynomial of interpolation in general may not approximate a given function. This deficiency is tackled by means of piecewise polynomial functions knotted at the partition points with some conditions, mainly by continuity.

Keywords: Continuity, Convexity and Interpolation.

1. INTRODUCTION

We study approximation of functions C^{2} by means of quartic piecewise polynomial. Here we lighten the continuity requirements at the knot points and impose a convex type of structure inside the partition. The convex type condition is the following:

$$
\alpha s\left(x_{i-1}+m_{1} h\right)+(1-\alpha) s\left(x_{i-1}+m_{2} h\right)=s\left(x_{i-1}+h\left(\alpha m_{1}+(1-\alpha) m_{2}\right)\right)
$$ $i=1,2, \ldots n$, where α, m_{1}, and m_{2} are positive numbers such that $0<m_{1}<m_{2}<1$ and $0<\alpha<1$. We denote such class of spline functions by $S\left(4_{1}^{c}, \Delta\right) . S\left(3_{1}^{c}, \Delta\right)$ has a similar meaning for cubic case, Kumar and Das [5]. This consideration gives a coefficient matrix for computation of spline function.

Let us consider two consecutive subinterval of the partition namely $\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i}, x_{i+1}\right]$. If we define a polynomial $p_{t}(x)$ of degree t in the first interval and in the second interval the other polynomial is $p_{t}(x)+c, c \neq 0$. At the common point the value of the first polynomial is $p_{t}\left(x_{i}\right)$ and the second is $p_{t}\left(x_{i}\right)+c$. Such defined piecewise function is not continuous at the common point. But the first derivative of the piecewise functions are continuous at x_{i}. In
view of this we consider the polynomial of this type of the next theorem.

2. MAIN RESULT

THEOREM 1: We consider a pp function s, where s and $s^{\prime \prime}$ are continuous, satisfying the interpolatory conditions:
(i) $s\left(x_{i}\right)=f\left(x_{i}\right), i=1,2, \ldots n$,
(ii) $s\left(t_{i}\right)=f\left(t_{i}\right), i=1,2, \ldots n$,
where $t_{i}=x_{i-1}+\theta h, 0<\theta<1$,
and
(iii) $\alpha s\left(x_{i-1}+m_{1} h\right)+(1-\alpha) s\left(x_{i-1}+m_{2} h\right)=s\left(x_{i-1}+h\left(\alpha m_{1}+(1-\alpha) m_{2}\right)\right)$, $i=1,2, \ldots n$,
for uniform partition with $m_{1}+m_{2}=1,0<\alpha<1$.
This pp function exists uniquely for $\theta=\frac{1}{4}$, if $\lambda_{1}<m_{2}<\lambda_{2}$ and
$\lambda_{2}<m_{2}<\lambda_{1}$,
where
$\lambda_{1}=\frac{1}{2\left(-80 \alpha+80 \alpha^{2}+40\right)}\left(21+80 \alpha^{2}-42 \alpha+\sqrt{\left(601+1924 \alpha^{2}-1924 \alpha\right)}\right)$,

$$
\alpha<\frac{3}{4}
$$

and

$$
\begin{aligned}
\lambda_{2} & =\frac{1}{2\left(-80 \alpha+80 \alpha^{2}+40\right)}\left(21+80 \alpha^{2}-42 \alpha-\sqrt{\left(601+1924 \alpha^{2}-1924 \alpha\right)}\right) \\
\alpha & >\frac{3}{4}
\end{aligned}
$$

THEOREM 2: The error of approximation of the pp function of Theorem 1 for $f \in C^{2}[0,1]$, is the following:

$$
e(x) \leq h^{2}\left(\text { constant } \omega\left(f^{\prime \prime} ; h\right)+\left\|D^{-1}\right\|\left\|f^{\prime \prime}\right\|\right)
$$

where constant $=\left\|D^{-1}\right\|(|p|+|r|+\theta+2)$.
The estimates for $\left\|D^{-1}\right\|$ have been obtained at $\lambda_{1}<m_{2}<\lambda_{2}$,
$\left\|D^{-1}\right\| \leq \frac{12 A}{T_{4}}$ and at $\lambda_{2}<m_{2}<\lambda_{1},\left\|D^{-1}\right\| \leq \frac{12 A}{T_{5}}$.
where

$$
\begin{aligned}
T_{4}= & \left(\frac{165}{64}-\frac{165}{32} \alpha+\frac{165}{32} \alpha^{2}\right) m_{2}^{2}+\left(\frac{387}{64} \alpha-\frac{165}{32} \alpha^{2}-\frac{387}{128}\right) m_{2} \\
& -\frac{51}{128}-\frac{111}{64} \alpha+\frac{165}{128} \alpha^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{5}= & \left(\frac{105}{64}-\frac{105}{32} \alpha+\frac{105}{32} \alpha^{2}\right) m_{2}^{2}+\left(\frac{81}{16} \alpha-\frac{105}{32} \alpha^{2}-\frac{81}{32}\right) m_{2} \\
& -\frac{3}{8}-\frac{219}{128} \alpha+\frac{105}{128} \alpha^{2}
\end{aligned}
$$

Remarks:

1. In view of the complicated equations in the proof we considered $\theta=\frac{1}{4}$. The other values of θ can be considered.
2. We observe after the proof of Theorem 2 that the order of the $e_{i}^{\prime \prime}$ cannot be improved in general.

Proof of the Theorem 1:

Let $s_{i}(x)=s(x)$ be pp function in $\left[x_{i-1}, x_{i}\right], i=1,2, \ldots n$. We write $s^{\prime \prime}\left(x_{i}\right)=M_{i}$, $i=1,2, \ldots n$.

We have
(1) $s^{\prime \prime}(x) h^{2}=-M_{i-1}\left(2\left(x_{i}-x\right)\left(x-x_{i-1}\right)-\left(x_{i}-x\right)^{2}\right)$

$$
-M_{i}\left(2\left(x_{i}-x\right)\left(x-x_{i-1}\right)-\left(x-x_{i-1}\right)^{2}\right)+6 \eta_{i}\left(x_{i}-x\right)\left(x-x_{i-1}\right)
$$

where $\eta_{i}^{\prime} s$ are constants.
The pp function $s(x)$ defined on interval $\left[x_{i-1}, x_{i}\right]$ is given by
(2) $s(x) h^{2}=-M_{i-1}\left(\frac{1}{3}\left(x_{i}-x\right)\left(x-x_{i-1}\right)\right)^{3}+\frac{1}{6}\left(x-x_{i-1}\right)^{4}$

$$
\begin{aligned}
& \left.-\frac{1}{12}\left(x_{i}-x\right)^{4}\right)-M_{i}\left(\frac{1}{3}\left(x_{i}-x\right)\left(x-x_{i-1}\right)^{3}+\frac{1}{12}\left(x-x_{i-1}\right)^{4}\right) \\
& \left.+\eta_{i}\left(\left(x_{i}-x\right)\left(x-x_{i-1}\right)^{3}+\frac{1}{2}\left(x-x_{i-1}\right)^{4}\right)+\delta_{i}\left(x-x_{i-1}\right) h^{3}+\gamma_{i} h^{4}\right)
\end{aligned}
$$

where $\delta_{i}^{\prime} s$ and $\gamma_{i}^{\prime} s$ are also constants.
Now by using interpolatory condition (i) of $s(x)$, we get
(3) $\quad \gamma_{i+1}-\gamma_{i}=h^{-2}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)-\frac{1}{12}\left(M_{i}-M_{i-1}\right)$.

Now apply the other interpolatory condition (ii) of $s(x)$. We find
(4) $\delta_{i+1}-\delta_{i}=\theta^{-1}\left(h^{-2}\left(f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)+M_{i+1} b+M_{i}(a-b)\right.$

$$
\left.-M_{i-1} a-\left(\eta_{i+1}-\eta_{i}\right) c-\left(\gamma_{i+1}-\gamma_{i}\right)\right)
$$

where
$a=\frac{1}{3}(1-\theta) \theta^{3}+\frac{1}{6} \theta^{4}+\frac{1}{12}(1-\theta)^{4}$,
$b=\frac{1}{3}(1-\theta) \theta^{3}+\frac{1}{12} \theta^{4}$,
$c=(1-\theta) \theta^{3}+\frac{1}{2} \theta^{4}$.
We get the restriction about the continuity of $s(x)$, we find
(5) $\quad \eta_{i+1}-\eta_{i}=-\frac{B}{A} M_{i-1}+\left(\frac{B-C}{A}\right) M_{i}+\frac{C}{A} M_{i+1}, i=1,2, \ldots, n-1$.
where
$A=\frac{1}{2}\left(\alpha^{2}-4 \alpha^{2} m_{2}+4 \alpha^{2} m_{2}^{2}-4 \alpha m_{2}^{2}+4 \alpha m_{2}-\alpha+2 m_{2}^{2}-2 m_{2}-1\right)$,
$B=\frac{1}{12}\left(12 \alpha^{2} m_{2}^{2}+3 \alpha^{2}-12 \alpha^{2} m_{2}-12 \alpha m_{2}^{2}+16 \alpha m_{2}-5 \alpha+6 m_{2}^{2}-8 m_{2}+1\right)$,
and
$C=\frac{1}{12}\left(-12 \alpha^{2} m_{2}+12 \alpha^{2} m_{2}^{2}+3 \alpha^{2}-12 \alpha m_{2}^{2}+8 \alpha m_{2}-\alpha+6 m_{2}^{2}-4 m_{2}-1\right)$.
From equations (3),(4) and (5), we obtain the following system of equations, for $i=1,2, \ldots n$:
(6) $p M_{i+1}+q M_{i}+r M_{i-1}$
$=h^{-2} \theta\left\{f\left(x_{i+1}\right)_{-} f\left(x_{i}\right)-\theta^{-1}\left(f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)-\left(1-\theta^{-1}\right)\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)\right\}$,
for $i=1,2, . ., n$, where
$p=\frac{1}{12 A}(-A \theta+12 A b+6 C \theta-12 C c)$,
$q=\frac{1}{12 A}(-2 A \theta+12 A a-12 A b+6 B \theta-6 C \theta-12 B c+12 C c+A)$,
$r=\frac{1}{12 A}(3 A \theta-12 A a-6 B \theta+12 c B-A)$.
The coefficients of $M_{i}^{\prime} s$ of system of equations becomes complicated for general θ. We consider a special case at θ, i.e. $\theta=\frac{1}{4}$.

We observe
(7) $\quad A<0$ for all α and m_{2}.

The following is the coefficient matrix of $M_{i}^{\prime} s$ of the above equations (6),

$$
D=C(p, q, r: p, r)=\left[\begin{array}{cccccccc}
q & r & 0 & 0 & 0 & \ldots & 0 & p \\
p & q & r & 0 & 0 & \ldots & 0 & 0 \\
0 & p & q & r & 0 & \ldots & 0 & 0 \\
0 & 0 & p & q & r & \ldots & 0 & 0 \\
\cdots & \ldots & \cdots & \ldots & \ldots & \ldots & \cdots & \cdots \\
\cdots & \ldots & \cdots & \cdots & \ldots & \cdots & \cdots & \cdots \\
r & 0 & 0 & 0 & 0 & \ldots & p & q
\end{array}\right] .
$$

We investigate non-singularity of the coefficient matrix D.

In order to see non singularity of the matrix D, we see the diagonal dominance of matrix D. The matrix D is diagonally dominant if
(8) $\quad d d=q-r-|p|>0$,
since the coefficients of M_{i} and M_{i-1} are positive for all permissible values of α and m_{2}.

For $\lambda_{1}<m_{2}<\lambda_{2}$, (8) can be written as
$q-r+p=\frac{1}{12 A} T_{4}>0$,
It can be seen that always $T_{4}<0$. Since $A<0$, we get that the matrix is diagonally dominant. Also $\left\|D^{-1}\right\| \leq \frac{1}{q-r+p}=\frac{12 A}{T_{4}}$.

Now we consider the case $\lambda_{2}<m_{2}<\lambda_{1}$, (8) can be written as
$q-r-p=\frac{1}{12 A} T_{5}$,
we see that
T_{5} does not change sign in permissible values of m_{2} and $T_{5}<0$. Hence the
matrix is diagonally dominant and $\left\|D^{-1}\right\| \leq \frac{1}{q-r-p}=\frac{12 A}{T_{5}}$.

Proof of Theorem 2:

Let $e(x)=s(x)-f(x)$.
Now by equation (6), we get
(9) $p e_{i+1}^{\prime \prime}+q e_{i}^{\prime \prime}+r e_{i-1}^{\prime \prime}=U_{i}-p f_{i+1}^{\prime \prime}-q f_{i}^{\prime \prime}-r f_{i-1}^{\prime \prime}, i=1,2, \ldots, n$,
where
U_{i}
$=h^{-2} \theta\left\{\left(f\left(x_{i+1}\right)_{-} f\left(x_{i}\right)-\theta^{-1}\left(f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)-\left(1-\theta^{-1}\right)\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)\right\}\right.$.
Equation (9) can be written as

$$
\begin{aligned}
p e_{i+1}^{\prime \prime} & +q e_{i+1}^{\prime \prime}+r e_{i+1}^{\prime \prime} \\
& =\theta f^{\prime \prime}\left(\delta_{i}\right)-f^{\prime \prime}\left(\phi_{i}\right)-p f_{i+1}^{\prime \prime}+(p+r) f_{i}^{\prime \prime}-r f_{i-1}^{\prime \prime}, \\
& =\theta f^{\prime \prime}\left(\delta_{i}\right)-f^{\prime \prime}\left(\phi_{i}\right)-p\left(f_{i+1}^{\prime \prime}-f_{i}^{\prime \prime}\right)+r\left(f_{i}^{\prime \prime}-f_{i-1}^{\prime \prime}\right), \\
& =\theta\left(f^{\prime \prime}\left(\delta_{i}\right)-f^{\prime \prime}\left(\phi_{i}\right)\right)-(1-\theta) f^{\prime \prime}\left(\phi_{i}\right)-p\left(f_{i+1}^{\prime \prime}-f_{i}^{\prime \prime}\right)+r\left(f_{i}^{\prime \prime}-f_{i-1}^{\prime \prime}\right), \\
& \leq(|p|+|r|+\theta) \omega\left(f^{\prime \prime} ; h\right)+\left\|f^{\prime \prime}\right\| .
\end{aligned}
$$

We find

$$
\begin{aligned}
& p e_{i+1}^{"}+q e_{i}^{"}+r e_{i-1}^{\prime} \\
& =\theta \exp \left(x_{i-1}\right)\left(1+\frac{h}{2}+\text { higher powers of }(h)\right)\left(\frac{h}{2}+\text { higher powers of }(h)\right) \\
& -\left(\frac{\theta h}{2}+\text { higher powers of }(\theta h)\right)+o(1)
\end{aligned}
$$

We have

$$
\min \left\{\left|p e_{i+1}^{\prime \prime}\right|,\left|q e_{i}^{\prime \prime}\right|,\left|r e e_{i-1}\right|\right\}
$$

$\geq \theta \exp \left(x_{i-1}\right)\left(1+\frac{h}{2}+\right.$ higher powers of $\left.(h)\right)\left(\frac{h}{2}+\right.$ higher powers of $\left.(h)\right)$

$$
\begin{aligned}
& -\left(\frac{\theta h}{2}+\text { higher powers of }(\theta h)\right)+o(1) \\
& \geq \theta \exp \left(x_{i-1}\right)+o(1) .
\end{aligned}
$$

REFERENCES

[1] DAS, V. B.: Spline interpolation by lower degree polynomials using area matching condition, Ph.D., Thesis, Rani Durgawati Uni. (2004), Jabalpur.
[2] DIKSHIT, H. P. AND POWAR, P.: On deficient cubic spline interpolation, J. Approx. Theory, 31(1981), 99-106.
[3] GOVIL, L. K.: Approximation by Lower degree splines, Thesis for Ph.D., (1990), Rani Durgawati Uni., Jabalpur.
[4] JOSHI, T. C. AND SAXENA, R. B.: On quartic spline interpolation, Ganita, Vol. 33, 2(1982), 97-111.
[5] KUMAR, A. AND DAS, V. B.: Convergence of cubic piecewise function, Journal of Computational and Applied Math., 194(2006), 388-394.
[6] MEIR A. AND SHARMA A.: Convergence of a class of interpolatory splines, J. Approx. Theory, 1(1968), 243-250.
[7] TARAZI, M. N. EL. AND SALLAM, S.: On quartic splines with application to quadratures, Computing, 38 (1987), 355-361.

Dr.Karun Lata Shukla

Email ID: mishra.mini855@gmail.com

