
 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 62

22222933333333333333333333333333
SICCAT:Software Inheritance Coupling Complexity Analysis Tool

Vanitha N
1
, ThirumalaiSelvi R

2

1(
Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore, India

 & Assistant Professor,Department of Computer Science, Women’s Christian College, Chennai, India)

2(Assistant Professor, Department of Computer Science, Govt. Arts College for Men, Nandanam, Chennai, India)

I. INTRODUCTION

 Software complexity stands for the measure of an

entity, which have extremely complicated structure

and so many interconnected links. During the

design phase, the number of interconnections

between the elements increases gradually, which

turns into very hard to understand and as the

software complexity affects many quality attributes

such as reliability, usability, modifiability, etc.

either directly or indirectly, it is the responsibility

of software developers to build low complex

software products. So without any complexity

measure it is difficult for the developers to assess

the project complexity. In Java based projects,

Coupling is one of the important metrics in

measuring the software complexity that affects the

overall software performance. Tight coupling

subsists between two classes when one class is

collaborating with another class .Inheritance

Coupling occurs when one class inherits the

property of another class within and between

packages and higher the level of coupling, higher

the software complexity and it degrades the

Software quality. Using coupling metrics one can

examine and compare the data with the previous

result and ensure the improvements happened. A

software tool is a program that helps to develop

applications in a proper and easy manner. So many

software defect estimation tools have been

effectively applied in many real-world software

projects. The purpose of this paper is to develop a

software tools that calculates the Inheritance

coupling complexity of the product on a single click

which aims to reduce the time and effort of the

developers.

 This paper measures the complexity of the object

oriented software system using inheritance coupling

at the package level, which uses the CK metrics [1]

such as Coupling between Objects (CBO), Depth of

Inheritance Tree (DIT) and Number of Children

(NOC) to identify and analyze the coupled

components. The complexity is measured by

assigning different weights based on the

RESEARCH ARTICLE OPEN ACCESS

Abstract:
Software developers engage themselves to develop better software in time. Software quality is

achieved when the software is free of defect, timely delivers within a specified budget, and meets

customer requirements and ease to maintain. One of the approaches to reduce the software defect is to

identify the part of the program that render high coupling which effects software quality. The changes

can be done in the portion of the program where the error is likely to occur due to its dependency

among the modules and thus put forth some effort on the overall quality of the software artifact. The

aim of this paper is to design and develop a software tool that finds the software complexity that may

take place due to inheritance coupling at the package level and visualize the same in graph. Based

upon the complexity value the developers can change the code at the earlier phase itself and thus

lower the complexity to some extent. This will help the software developers to minimize their time

and cost for the development of quality software.

Keywords — Complexity, Metrics, Tool, Visualization.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 63

dependencies between components at the package

level. The main goal of this paper is to design and

develop a software tool that computes the software

complexity that occurs due to inheritance coupling

at package level. Once computes the complexity,

identifies the most error prone classes and make

changes a in such classes, thus reduce the

complexity. This study uses CK metrics to compute

the complexity. As visualization is a useful and

easy way of depicting the results to the user, this

paper aids the developers to visualize their results.

The rest of this paper is structured as follows.

Section II presents literature review Section III

discusses the background to the field. Section IV

provides the architecture of the newly proposed

tool. Section V gives detailed description of the

newly proposed tool. Section VI presents the study

results. Section VII concludes the paper and

summarizes some future work.

II. LITERATURE REVIEW

A study of Conference proceedings or Journal

paper published recently or only the most

comprehensive to be included in this review.

Included papers were published between the year

2005 and 2018. Google Scholar, Scopus,

IEEExplore and ScienceDirect were the search

engines covered most of the publications given in

references. Totally 42 papers were identified, 19

unrelated papers to this research were rejected and

finally included 23 papers.

Reference [2] presented a software visual

analytics tools which analyze static program and

extract the fact and visualize the information which

support program comprehension. Reference [3]

shows the tool developed for analysing and

visualizing the networks. [4] merged the code

complexity with the maintenance time.

III. BRIEF DESCRIPTION ABOUT THE

PREVIOUS STUDY

A. ICCP Metric

Software complexity can be estimated using

various factors of software. Coupling is one of the

factors which affect the quality of software. In this

section, we are discussing a newly proposed metric

and a tool for measuring the complexity of the

software system based on the inheritance coupling

at the package level and visualizes the same in

graph.

 As shown in [1] deeper the level, higher the

value of the DIT. Deeper trees involve greater

design complexity with a higher probability of

errors in the code.

According to the previous study [5] inheritance

of classes from sub package in one package to sub

package in another package is at a deeper level of

inheritance which is harder to understand and thus

gives more complexity than else. Based on the

inheritance at package level weights are assigned.

Deeper the inheritance level higher the weights.

The assignment of different weights based on the

inheritance of the classes at the package level from

1 to 5 is shown in the following Table 1. No weight

has assigned to the state in which the packages

could not share any classes and it is mentioned as

not applicable (NA) in Table 1.

TABLE I

ASSIGNMENT OF WEIGHTS

The data collected from different Java projects

have chosen to demonstrate the practical features of

the proposed tool. The total number of parent

packages, its sub packages and classes in the five

projects are shown in the Table 2.

TABLE III
NUMBER OF PACKAGES AND CLASSSES IN FIVE DIFFERENT JAVA

PROJECTS

Java

Projects

Library

Management

System

(Project 1)

External

Remuneration

System

(Project 2)

Stock

Maintenance

System

(Project 3)

Student

Result

System

(Project 4)

Online

Voting

System

(Project

5)

No. of

Parent

packages

4 2 2 3 2

Inherit

Classes

Same

Package

Different

Package

Same Sub

Package

Different

Sub

package

Same

Package

1 NA 2 4

Different

Package

NA 1 4 2

Same Sub

package

2 4 3 5

Different

Sub

package

4 2 5 3

 International Journal of Engineering and Techniques

ISSN: 2395-1303

No. of

Sub

Packages

10 6 4

No. of

Classes

42 31 26

 The number of classes inherited at package level

in a different manner for the five projects are sho

in the Table 3.

TABLE IIIII
INHERITANCE COUPLED CLASSES AT PACKAGE LEVEL FOR FIVE PROJEC

 We have chosen the mid-range formula Eq. (1)

for calculating the lowest and highest possibility of

Inheritance Coupling complexity values.

 Mid-Range formula is a set of statistical data

values is the arithmetic mean of the maximum and

minimum values in a data set and it is a measure of

central tendency.

 mid-range = min + (max - min) / 2

mid-range – expected complexity value

min – minimum complexity value that can be

occurred

max – maximum complexity value that can be

occurred

 From Table 4 it is shown that the difference

between the actual complexity value and expected

complexity value are high for the project

and hence the probability of getting risk is high

which may diminish overall software quality.

Coupled Classes at

Package level

Project

1

Project

2

Project

3

Classes extends
from the same

package

5 2 3 10

Classes in sub
package extends

from the same

package

3 2 7 12

Classes in sub

package extends

classes of sub

package belongs to

same package

6 4 3 5

 Classes in package

extends classes of

sub package

belongs to other

package

4 7 2 6

Classes in sub
package extends

classes of sub

package belongs to
other package

4 7 0 5

International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar –

1303 http://www.ijetjournal.org

9 5

53 20

The number of classes inherited at package level

different manner for the five projects are shown

EVEL FOR FIVE PROJECTS

range formula Eq. (1),

calculating the lowest and highest possibility of

complexity values.

set of statistical data

of the maximum and

and it is a measure of

min) / 2 (1)

expected complexity value

minimum complexity value that can be

maximum complexity value that can be

it is shown that the difference

between the actual complexity value and expected

projects 2, 3 and 4

the probability of getting risk is high

which may diminish overall software quality.

 From the results, it has shown that

the class inherits in the deeper level

high complexity.

TABLE IV

ACTUAL AND EXPECTED VALUE OF INHERITANCE COUPLING

COMPLEXITY

B. Proposed Tool

From the previous study, we proposed a tool which

is named as Software Inheritance Coupling

Complexity Analysis tool (SICCAT) which

divided into complexity Evaluation and

visualization, as follows. Complexity Evaluation

collects the information about the source code from

the database and computes the complexity in the

proposed manner. Visualization uses information

from the database and use visualization techniques

to create interactive displays of the software

complexities in graph. SICCAT uses the

algorithm [5] for the complexity evaluation

Shows the architecture of newly

tool

Fig. 1 Architecture of newly proposed

 We have built the Software Inheritance Coupling

Complexity Analysis Tool (SICCAT) that

Project

4

Project

5

10 4

12 4

5 2

6 0

5 5

Projects Actual Value

Library Management System

65

External Remuneration

System

81

Stock Maintenance System

34

Student Result System

98

Online Voting System 43

– Apr 2018

 Page 64

it has shown that the number of

in the deeper level is more results

ACTUAL AND EXPECTED VALUE OF INHERITANCE COUPLING

From the previous study, we proposed a tool which

is named as Software Inheritance Coupling

Complexity Analysis tool (SICCAT) which can be

divided into complexity Evaluation and

Complexity Evaluation

t the source code from

the database and computes the complexity in the

proposed manner. Visualization uses information

from the database and use visualization techniques

to create interactive displays of the software

complexities in graph. SICCAT uses the ICCP

for the complexity evaluation. Fig. 1.

of newly proposed SICCAT

proposed SICCAT tool

We have built the Software Inheritance Coupling

Complexity Analysis Tool (SICCAT) that

Actual Value Expected Value

65 66

81 66

34 45

98 114

43 45

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 65

calculates the complexity of software product that

may arise due to inheritance coupling at package

level that was developed in Java and collaborates

with other software applications, including a

JFreeChart and WAMP Server. SICCAT accepts

the input from the user needed to compute the

complexity and stores it in the database. SICCAT

retrieves the information whenever needed from the

database and allow developers to update and delete

the data if they want. The tool not only computes

the actual complexity, but also assists the

developers in determining whether to reduce the

complexity level or not, by making changes in the

defect prone code by comparing the actual and

desired complexity value in tabular form and also

visually. The actual and desired complexity values

are calculated according to the previous work [5].

The calculated complexity values are layout into

tabular forms and saved back into the database.

Fig. 2. Shows SICCAT’s screen design, which has

the option to insert, update, delete and view the

data’s into and from database.

Fig. 2 Data inserted successfully into the database

Fig. 3. shows the software project, which is to be

updated by choosing from the combobox by the

user.

Fig. 3 Data updated successfully in the database

Fig. 4. Shows the software project deleted from the

database successfully. The user has to select the

project to be deleted from the combobox and when

hits a delete button the project must be completely

removed from the database.

Fig. 4 Record deleted successfully from the database

Fig. 5. gives the information about the software

project stored in the database when hits a show

button.

Fig. 5 View details of software project in tabular format

Fig. 6. shows the actual and desired complexity

value of the selected software project from the

combobox in tabular format.

Fig. 6 View actual and desired complexity values in tabular format

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 66

The view in Graph button tells SICCAT to show

actual and desired complexity value in the graph.

From Fig.7. it can be easily studied the acceptable

level of complexity of the five projects.

Fig. 7 Actual and expected values of Inheritance Coupling Complexity of

different projects

IV. CONCLUSION AND FUTURE WORK

In this paper, we found the complexity of the

object-oriented system with our newly proposed

SICCAT tool. We have also associated our newly

proposed inheritance coupling complexity metric

with the software quality attribute, modifiability.

The results have shown that more the numbers of

the classes inherit in the deeper level results high

complexity. Overall the results conclude that

determining the complexity of the software

program that may arise due to inheritance coupling

using automated tool will help software developers

and researchers to reduce their effort in terms of

cost and time and to develop high-quality software.

This study has used visualization techniques to

easily discover the complex level of the software

system.

 In future, progress or extension of this study can

be done by focusing on extending the tool for

getting the software programs as the input, parse

and obtain the information about the coupled

classes and packages.

REFERENCES

1. S. Chidamber, and C. Kemerer, “Towards a metrics suite

for object oriented design,” ACM., vol. 26, no. 11, pp.

197–211 1991.

2. Reniers Voinea, L., Ersoy, O., & Tele a, A., “The Solid*

toolset for software visual analytics of program structure

and metrics comprehension: From research prototype to

product,” Science of Computer Programming., vol. 79, pp.

224-240.

3. N.J. Van Eck, and L. Waltman, “CitNetExplorer: A new

software tool for analyzing and visualizing citation

networks,” Journal of Informetric.,, vol. 8, no. 4, pp. 802-

823, 2014.

4. V. Antinyan, M. Staron, and A. Sandberg , “Evaluating

code complexity triggers, use of complexity measures and

the influence of code complexity on maintenance

time,”Empirical Software Engineering., vol. 22, no.6, pp.

3057-3087, 2017.

5. N. Vanitha, and R.Thirumalaiselvi, “Inheritance Coupling

Complexity Metric in Association with Modifiability at

Package Level: An Empirical Exploration,” International

Journal of Pure and Applied Mathematics., vol. 118, no.

18, pp. 3789-3797, 2018.

6. J. Meinicke, T. Thüm, R. Schroter, F. Benduhn, and G.

Saake, “An overview on analysis tools for software

product lines,”In Proceedings of the 18th International

Software Product Line Conference: Companion Volume

for Workshops, Demonstrations and Tools-Vol. 2 , pp. 94-

101, ACM, Sep. 2014.

7. P.W. McBurney, and C. McMillan, “ Automatic source

code summarization of context for java methods,” IEEE

Transactions on Software Engineering.,vol. 42, no. 2, pp.

103-119,2016.

8. T. Bakota, P. Hegedus, I. Siket, G. Ladanyi, and R. Ferenc,

“Qualitygate SourceAudit: A tool for assessing the

technical quality of software,” In Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on pp.

440-445,IEEE, Feb. 2014.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 67

9. A. Poliakov, J. Foong, M. Brudno, and I. Dubchak,

“GenomeVISTA—an integrated software package for

whole-genome alignment and

visualization,” Bioinformatics., vol. 30, no. 18, pp. 2654-

2655,2014.

10. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch,

C., Grebing, S., ... & Mostowski, W, “The KeY platform

for verification and analysis of Java programs,”

In Working Conference on Verified Software: Theories,

Tools, and Experiments , pp. 55-71 , Springer, Cham, Jul.

2014.

11. T. Mens, “Research trends in structural software

complexity,”arXiv preprint arXiv:1608.01533, 2016.

12. V.S. Bidve, and P. Sarasu, “Coupling Measures and its

Impact on Object-Oriented Software Quality” Indian

Journal of Science and Technology., vol. 9, no. 21, 2016.

13. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan ,“

An empirical study of the impact of modern code review

practices on software quality,” Empirical Software

Engineering., vol. 21, no. 5, pp. 2146-2189, 2016.

14. M. Burch, M. Raschke, A. Zeyfang, and D. Weiskopf, “A

Scalable Visualization for Dynamic Data in Software

System Hierarchies. In Software Visualization

(VISSOFT),” IEEE Working Conference on pp. 85-93,

Sep 2017.

15. S. Perer, “ Balancing systematic and flexible exploration of

social networks”Visualization and Computer Graphics.,

IEEE Transactions on vol. 12, no. 5, pp. 693–700, 2006.

16. C.Mallikarjuna, K. Sudheer Babu, P. Chitti Babu, “A

Report on the Analysis of Software Maintenance and

Impact on Quality Factors,”International Journal of

Engineering Sciences Research-IJESR. , vol. 05, Article

01335, 2014.

17. B.A. Price, R.M. Baecker, and I.S. Small, “ A principled

taxonomy of software visualization” Journal of Visual

Languages & Computing., vol. 4, no. 3, pp. 211-266,

1993.

18. F. Fittkau, A. Krause, and W. Hasselbring, “Software

landscape and application visualization for system

comprehension with ExplorViz” Information and software

technology., Vol. 87, pp. 259-277, 2017.

19. N. Elmqvist, and J.S. Yi, “Patterns for visualization

evaluation” Information Visualization., vol. 14, no. 3, pp.

250-269, 2015.

