

Chaos Engineering for Fintech Infrastructure Resilience and Fraud Prevention

Anirudh Mustyala

Software Engineering, Plano - Texas

Email: anirudhmusthyala@gmail.com

--************************---------------------------------

Abstract

Although conventional software testing methods contribute significantly to the security of fintech

systems, these methods have various shortcomings that limit their ability to ensure the safety of

fintech platforms. These methods tend to be more reactive than proactive, only test known

vulnerabilities, and are suitable for less complex systems. Chaos engineering model is a novel

security management paradigm that proactively mitigates vulnerabilities, is suited to complex

distributed networks such as fintech systems, and provides a background for researching and

mitigating unknown vulnerabilities. This writing discusses chaos engineering and how it can be

leveraged to mitigate fraud in fintech entities.

Keywords: Fintech,Fraud,Platform, Data.

--************************---------------------------------

RESEARCH ARTICLE OPEN ACCESS

I. Introduction

In the 1960s, Edward Lorenz, a meteorologist

at the Massachusetts Institute of Technology

in Cambridge, noted that a computer could

predict very different weather patterns from

almost similar data inputs. He discovered that

very minor differences in input data led to

very diverse outcomes. He explained this

phenomenon as the 'butterfly effect.'

According to the concept, insect flaps in

South America could set up conditions that

would cause a tornado in North America

(Ghys, 2015). This effect was later described

as chaos theory. Chaos theory is the study of

ostensibly arbitrary or unpredictable behavior

in systems caused by deterministic laws.

Chaos engineering is based on chaos theory

concepts. It involves testing distributed

computer systems to ensure they can

withstand unexpected disruptions. The

objective of chaos engineering is to detect

weaknesses in systems through controlled

experiments that introduce random and

unpredictable behavior in systems (Basiri et

al., 2016). Fintech companies tend to have

complex and elaborate systems. While

traditional methods like unit testing, system

testing, and acceptance testing play an

integral role in ensuring the safety of these

systems, they are not sufficient to guarantee

security. Chaos engineering helps engineers

to unearth system vulnerabilities that cannot

be predicted easily. This writing discusses

chaos engineering and how it can be

leveraged to mitigate fraud in fintech entities.

II. BODY

What is chaos engineering?

As aforementioned, chaos engineering is the

practice of introducing faults and failure

scenarios in a system with the intention of

testing its resilience in the face of random

disruptions. The principal objective of chaos

engineering is to determine potential failure

points and remediate them before attackers

can take advantage of them. Chaos

engineering is based on the concept that

minor disruptions can cause applications to

respond unpredictably and cause

monumental adverse impacts on the system.

By injecting faults in the applications,

engineers can gauge how the systems respond

to these scenarios and optimize them

accordingly. Chaos engineering is suitable

for testing natural, technical, and malicious

crises. For example, engineers may test how

the system responds to earthquakes affecting

the availability of data centers or cyber

attackers injecting malware into system

applications. Although chaos engineering can

be applied in testing any type of application

or system, it is primarily used in distributed

systems.

Why chaos engineering

The software development life cycle (SDLC)

leverages different application testing

methods to enhance the security of cyber

systems. While these conventional testing

methods are instrumental in ensuring the

safety of software systems, they are

susceptible to various weaknesses that limit

their effectiveness. These weaknesses

include;

• Only suitable for known risks:

Traditional testing methods, such as

unit testing, are designed to focus on

the known properties of the system

(Tucker at al., 2018). This implies

that emerging vulnerabilities are

likely to go undetected by traditional

methods.

• Reactive testing: These methods also

tend to be reactive. Engineers must

first detect a threat, learn about it,

implement a solution, and then test

the efficacy of the solution. Reactive

testing is not suitable for systems that

hold sensitive data and resources like

fintech systems.

• Not suitable for complex systems:

Conventional testing methods are

ideal for simple and medium systems.

However, testing complex integrated

systems using traditional methods is

almost unviable. Conventional testing

methods may be used to test

individual components of complex

integrated systems but may not

provide comprehensive security

insights for distributed systems.

Chaos engineering addresses most of the

weaknesses of traditional testing methods.

Rather than testing known risks, chaos

engineering is based on experimentation. The

model proposes hypotheses, which are then

experimented through controlled

simulations. The model reveals how systems

cope under different situations, disclosing

unknown information about applications. No

traditional software testing methods can

generate insights comparable to chaos

engineering. Experimentation generates

information that cannot be revealed by

typical testing. Chaos engineering addresses

systems vulnerabilities proactively. The

model requires engineers to create

hypotheses for potential vulnerabilities and

test them. If the premises are proven,

developers reconfigure the system to deal

with such scenarios in the future. Chaos

engineering is particularly meant for large-

scale distributed systems. The model is well

suited for testing systems with complex

dependencies and evolving components.

Complex systems also tend to have multiple

failure points. Chaos engineering is well-

specialized to test systems with numerous

failure points.

Typically, systems used by established

fintech companies are relatively complex and

distributed. Chaos engineering provides a

novel approach to effectively test how these

applications perform under different strains.

Most of the data stored by fintech companies

is related to customers’ financial information.

Such information is sensitive and should

never be exposed to unauthorized persons.

Chaos engineering proactively mitigates

vulnerabilities, protecting customers’ data all

the time. In general, chaos engineering is a

unique testing model that specifically meets

the testing needs of fintech applications. It is

ideal for distributed systems and proactively

mitigates issues before fraudsters can

leverage them.

Principles of chaos engineering

For engineers to conduct compelling chaos

engineering experiments, they must follow a

set of guiding principles. These principles

define how engineers can identify scenarios

that are not tested by traditional methods,

how to plan for the experiments, manage the

simulation process, and what to do with the

results. According to IBM (2023), the four

main principles that guide chaos engineering

are;

Experiment planning

The first principle that guides chaos

engineering is planning the experiments.

Prior to planning, engineers must have

comprehensive knowledge about the system's

normal behavior and what constitutes

abnormal functioning. The planning stage

must start with the formulation of

hypotheses. A basic hypothesis must describe

a possible vulnerability and how it can affect

the overall functioning of the system. It is

noble to also define metrics that will be used

to measure the level of system normalcy.

Such metrics can include latency and error

rates.

Real-world events

Chaos engineering should experiment real-

world events likely to undermine proper

functioning of systems. Real-world events

should be centered around hardware, servers,

and other external events likely to cause

system outages or malfunctioning, such as

surges in traffic and cyberattacks. Focus on

real-world events prevents engineers from

paying attention to events less likely to

happen.

Run experiments

After formulating hypotheses, defining

system's normal and abnormal behavior, and

deciding on performance metrics to measure,

the next phase is carrying out experiment to

collect actual results. It is recommended the

experiment is conducted in real production

environments to get more accurate results.

However, it is a rule of thumb to minimize the

blast radius when running experiments in

production environments. This ensures

adverse impacts are kept minimal in cases

when the system does not cope well with the

experiment. If the system seems resilient, the

blast radius can be gradually increased until

the entire system is tested. It is also advisable

to automate and run experiments

continuously. Running chaos engineering

experiments manually can be labor-intensive

and unsustainable.

Monitor results

The primary goal of chaos engineering is to

collect results that can be leveraged to

understand the resilience of a system. The

experiments should collect both control and

experimental results. Control results are vital

for helping teams understand normal system

behavior at any particular time. Any

deviation of experimental results from

control results can be traced to specific

experimental actions.

Best practices

Chaos engineering is an intricate practice that

can lead to unintended outcomes when not

conducted properly. To meet the intended

goals, engineers must adhere to various best

practices. Some of the best practices for

chaos engineering include;

• Focus on critical parts: During

hypothesis creation, it is vital to

prioritize the most important aspects

of the system. In Fintech, servers and

communication networks are the most

critical components of the system.

• Gradually scale-up experiments:

As aforementioned, it is clever to

carry out chaos engineering

experiments in confined

environments. This helps in

minimizing the impact of the

experiment on the entire system if the

implications are dire. Only scale up if

the effects are non-threatening. This

can be done by introducing a minor

disruption in a smaller component of

the system and then increasing the

blast radius and complexity of the

fault in subsequent experiments.

• Have a rollback plan: Chaos

engineering experiments can be

unpredictable. Even with measures

such as a limited blast radius, a simple

experiment can easily bring the entire

system down. It is essential engineers

have a rollback plan when executing

experiments. This allows faults to be

reverted quickly, allowing safe

abortion of experiments and return to

normalcy (Splunk, 2023).

• Measure impact: Apart from

measuring system resilience and

observing how the experiment affects

system performance, it is

recommended engineers measure

how the experiment affects customer

success. This may include tracking

metrics such as stream starts per

second and orders per minute. These

metrics are vital for determining

when to stop the experiment. For

example, when orders per minute or

stream starts per second start slipping,

it may mean the experiment is

harming user experience or even

limiting access to the platform. Chaos

engineering experiments should

never affect the usability or

accessibility of the platforms being

tested. If this happens, the experiment

should be halted immediately.

• Incorporate lessons in c-suit

decision-making: Chaos engineering

is not only meant for engineers and

low-level IT teams. The board of

directors can also use insights

retrieved from chaos engineering

experiments to make crucial

decisions, such as key changes in

technology stack and IT budgets.

Information collected from

experiments can be summarized and

shared in the right format with fintech

leaders.

III. Conclusion

Although conventional software testing

methods contribute significantly to the

security of fintech systems, these methods

have various shortcomings that limit their

ability to ensure the safety of fintech

platforms. These methods tend to be more

reactive than proactive, only test known

vulnerabilities, and are suitable for less

complex systems. Chaos engineering model

is a novel security management paradigm that

proactively mitigates vulnerabilities, is suited

to complex distributed networks such as

fintech systems, and provides a background

for researching and mitigating unknown

vulnerabilities. Chaos engineering can help

fintech companies enhance the reliability and

resilience of their IT systems, enhance user

experience, proactively curb online revenue

losses, and enhance confidence in systems.

Fintech firms can take their cybersecurity

game a notch higher by assimilating chaos

engineering as part of their system

management routines.

IV. REFERENCES

Basiri, A., Behnam, N., De Rooij, R., Hochstein,

L., Kosewski, L., Reynolds, J., & Rosenthal, C.

(2016). Chaos engineering. IEEE

Software, 33(3), 35-41.

Ghys, É. (2015). The butterfly effect. In The

Proceedings of the 12th International Congress

on Mathematical Education: Intellectual and

attitudinal challenges (pp. 19-39). Springer

International Publishing.

IBM (2023), IBM's principles of chaos

engineering. Retrieved From:

https://www.ibm.com/cloud/architecture/architec

ture/practices/chaos-engineering-principles/

Splunk (2023), Chaos Engineering: Benefits,

Best Practices, and Challenges. Retrieved From:

https://www.splunk.com/en_us/blog/learn/chaos

-engineering.html

Tucker, H., Hochstein, L., Jones, N., Basiri, A.,

& Rosenthal, C. (2018). The business case for

chaos engineering. IEEE Cloud

Computing, 5(3), 45-54.

https://www.ibm.com/cloud/architecture/architecture/practices/chaos-engineering-principles/
https://www.ibm.com/cloud/architecture/architecture/practices/chaos-engineering-principles/
https://www.splunk.com/en_us/blog/learn/chaos-engineering.html
https://www.splunk.com/en_us/blog/learn/chaos-engineering.html

