PARTIAL REPLACEMENT OF CEMENT WITH BAGASSE ASH & COCOUNT COIR FIBRE

1N.Purshothaman, 2M.G. Ranjith Kumar

1M.E Student, 2 Assistant professor
Department of Civil Engineering
Ambal Professional Engineering College, Coimbatore, Tamilnadu, india

BAGASSE:

There has been an attempt to utilize the large amount of bagasse ash, the residue from an in-line sugar industry and the bagasse-biomass fuel in electric generation industry. When this waste is burned under controlled conditions, it also gives ash having amorphous silica, which has pozzolanic properties. A few studies have been carried out on the ashes obtained directly from the industries to study pozzolanic activity and their suitability as binders, partially replacing cement.

Therefore it is possible to use bagasse ash (SCBA) as cement replacement material to improve quality and reduce the cost of construction materials. Pozzolanic Portland cement is recognized as a major construction material throughout the world. Portland cement is the conventional building material that actually is responsible for about 5% - 8% of global CO2 emissions.

This environmental problem will most likely be increased due to exponential demand of Portland cement. Researchers all over the world today are focusing on ways of utilizing either industrial or agricultural waste, as a source of raw materials for industry.

COCONUT COIR FIBER

A. International Status According to the research conducted by Majid Ali, et. al, from New Zealand, the mechanical and dynamic properties of coconut fibre reinforced concrete (CFRC) members were well examined. A comparison between the static and dynamic moduli was conducted. The influence of 1%, 2%, 3% and 5% fibre contents by mass of cement and fibre lengths of 2.5, 5 and 7.5 cm is investigated. Noor Md. Sadiquul Hasan, et. al from Malaysia, have investigated the physical and mechanical characteristics of concrete after adding coconut fiber on a volume basis.

They conducted a micro structural analysis test using a scanning electron microscope for understanding the bonding behaviour of the coconut fibers. Mahyuddin Ramli, et. al, from Malaysia studied the strength and durability of coconut fiber reinforced concrete in aggressive environments. Their aim was to mitigate the development of cracks in marine structures by introducing coconut fibers which would provide a localized reinforcing effect. Yalley, et.al, from United Kingdom performed various tests to study the enhancement of concrete
properties after addition of coconut fiber. Their study focused on the coconut fiber obtained from Ghana Africa.

They investigated the compressive strength, tensile strength, torsional strength, toughness and its ability to resist cracking and spalling.

METHODOLOGY

Experimental study on concrete use of bagasse ash and coconut coir fibre

Literature Review

Material Collection

Determination Of Properties Of Bagasse Ash And Coconut Coir Fibre

Design Mix For M25

Determination of Properties of Fresh Concrete

Casting Of Cubes, Cylinders

Testing Of Cubes, Cylinders

```
Analysis and Report Preparation

Chemical Analysis Of Bagasse Ash

Bagasse ash are collected for experimental work tested for the chemical compound at pollution laboratories PVT LTD, Surat. chemical compound result of bagasse as is follow:

<table>
<thead>
<tr>
<th>CHEMICAL COMPOUND</th>
<th>ABBREVIATION</th>
<th>SBA</th>
<th>PPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>SiO2</td>
<td>67.81</td>
<td>30.98</td>
</tr>
<tr>
<td>Aluminium oxide</td>
<td>Al2O3</td>
<td>19.44</td>
<td>5.42</td>
</tr>
<tr>
<td>Ferric oxide</td>
<td>Fe2O3</td>
<td>3.85</td>
<td>3.92</td>
</tr>
<tr>
<td>Calcium oxide</td>
<td>CaO</td>
<td>4.03</td>
<td>62.08</td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td>Na2O</td>
<td>0.53</td>
<td>0.28</td>
</tr>
<tr>
<td>Magnesium oxide</td>
<td>MgO</td>
<td>1.11</td>
<td>1.76</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>SO2</td>
<td>0.06</td>
<td>2.38</td>
</tr>
<tr>
<td>Alkalies</td>
<td>KO2</td>
<td>1.68</td>
<td>0.58</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>LOI</td>
<td>3.09</td>
<td>1.59</td>
</tr>
</tbody>
</table>

**TYPICAL PROPERTIES OF COIR FIBRE:**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Brown</td>
</tr>
<tr>
<td>Fibre length, mm</td>
<td>10-200</td>
</tr>
<tr>
<td>Fibre diameter, mm</td>
<td>0.2-0.35</td>
</tr>
<tr>
<td>Bulk density, kg/m3</td>
<td>140-150</td>
</tr>
<tr>
<td>Ultimate tensile strength, N/mm2</td>
<td>80-120</td>
</tr>
<tr>
<td>Modulus of elasticity, N/mm2</td>
<td>18-25</td>
</tr>
<tr>
<td>Water absorption, %</td>
<td>30-40</td>
</tr>
</tbody>
</table>
**Target Strength for MIX Proportioning**

\[ F' \text{ck} = f \text{ck} + 1.65s \]

\[ F' \text{ck} = \text{Target Average Compressive Strength} \ @ \ 28\text{days} \]

\[ f \text{ck} = \text{Characteristic Compressive Strength} \ @ \ 28\text{days} \]

\[ S = \text{Standard Deviation} \]

From Table 1 \( S = 4 \) N/mm²

Target Strength \( = 25 + 1.65 \times 4 \)

\[ = 31.6 \text{ N/mm}^2 \]

**Selection of Water Cement ratio**

From Table 5 of IS 456 Max w/c

Ratio = 0.45

Adopt w/c Ratio = 0.40

0.40 < 0.45 , Hence OK

**Mix Design for Concrete M25**

Grade Designation : M25

Grade of Cement : PPC 53 grade

Conforming to IS 8112

Minimum Cement Content : 320 kg/m³

Maximum Cement Content : 450kg/m³

Maximum Nominal Size of Aggregate : 20mm

Maximum Water-Cement Ratio: 0.45

Workability : 100mm (Slump)

Type of Aggregate : Crushed Agg

**Test Data for Materials**

- Cement Used
- PPC 53 Grade

Conforming to IS 8112

- Specific Gravity
  - i) Cement : 3.15
  - ii) Coarse aggregate : 2.71
  - iii) Fine Aggregate : 2.41

- Water Absorption
  - i) Coarse Aggregate : 0.5%
  - ii) Fine Aggregate : 1.0%

**Sieve Analysis**

- Coarse Aggregate 20mm
  - Grading Zone II is 0.62
  - From Table 2 of IS 383
  - Fine Aggregate is Grading Zone I of Table 4 of IS 383

**Target Strength for MIX Proportioning**

\[ F' \text{ck} = f \text{ck} + 1.65s \]

\[ F' \text{ck} = \text{Target Average Compressive Strength} \ @ \ 28\text{days} \]

\[ f \text{ck} = \text{Characteristic Compressive Strength} \ @ \ 28\text{days} \]

\[ S = \text{Standard Deviation} \]

From Table 1 \( S = 4 \) N/mm²

Target Strength \( = 25 + 1.65 \times 4 \)

\[ = 31.6 \text{ N/mm}^2 \]

**Selection of Water Cement ratio**

From Table 5 of IS 456 Max w/c

Ratio = 0.45

Adopt w/c Ratio = 0.40

0.40 < 0.45 , Hence OK
Selection of Water Content

From Table 2 Max w/c = 186 Litres (for 25 to 50mm slump)

Estimated w.c for 100 (Slump) = 186 + (6/100)x186

= 197 Litres

Calculation of Cement Content

Water Cement Ratio = 0.40

Cement Content = 197/0.40 = 492.5 kg/m3

From Table 5 of IS 456 Minimum Cement Content

Extreme Exposure Condition = 360 kg/m3

MIX PROPORTIONS

<table>
<thead>
<tr>
<th>Mix</th>
<th>Aggregate A</th>
<th>Aggregate B</th>
<th>Cement</th>
<th>Regen A</th>
<th>Regen B</th>
<th>Sand Aggregate</th>
<th>Coarse Aggregate</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>403 kg/m3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1475 kg/m3</td>
<td>1370 kg/m3</td>
<td>187 Ltr</td>
</tr>
<tr>
<td>ML</td>
<td>438 kg/m3</td>
<td>22.5 kg/m3</td>
<td>22.5 kg/m3</td>
<td>22.5 kg/m3</td>
<td>180 kg/m3</td>
<td>190 kg/m3</td>
<td>181 Ltr</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>521 kg/m3</td>
<td>174 kg/m3</td>
<td>22.5 kg/m3</td>
<td>174 kg/m3</td>
<td>174 kg/m3</td>
<td>181 Ltr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>403 kg/m3</td>
<td>40.5 kg/m3</td>
<td>22.5 kg/m3</td>
<td>174 kg/m3</td>
<td>1370 kg/m3</td>
<td>1370 kg/m3</td>
<td>181 Ltr</td>
<td></td>
</tr>
</tbody>
</table>

CASTING & CURING

CUBE MOULD:

The mould used was of size 150 mm x 150 mm x 150 mm. Each mould was provided with a metal base plate having a plane surface. The base plate supports the mould during the filling without leakage and it was attached to the mould by screws and coating of mould oil was applied between the interior surfaces of mould and the base plate.

CYLINDER MOULD:

The mould used was of size 150 mm diameter and 300 mm depth. Each mould was provided with a metal base plate having a plane surface. The base plate supports the mould during the filling without leakage and it was attached to the mould by screws and coating of mould oil was applied between the interior surfaces of mould and the base plate.

CASTING CYLINDER:

The concrete was filled into the mould in layer and each layer was compacted by using manual hand dumping after the top layer was smoothly finished by using trowel.

CURING:

The specimen were remoulded after 24 hours and cured for 28 days in curing tank. After curing period, the specimens were kept for drying and then tested using CTM 4000KN capacity.

RESULTS & DISCUSSION

The results of the various tests carried out to determine the strength and behaviour of bagasse ash and Coir Fibre are presented here.
COMPRESSIVE STRENGTH TEST

GENERAL

Compressive strength of concrete using bagasse ash replacement and coir fibre were added results were compared for split tensile test with ordinary mix.

<table>
<thead>
<tr>
<th>Mix</th>
<th>Specimen</th>
<th>7th Day Test in N/mm²</th>
<th>Average Compressive Strength in N/mm²</th>
<th>14th Day Test in N/mm²</th>
<th>Average Strength In N/mm²</th>
<th>28th Day Test in N/mm²</th>
<th>Average Strength In N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Sample 1</td>
<td>14.54</td>
<td>15.9</td>
<td>18.5</td>
<td>23.80</td>
<td>23.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 2</td>
<td>14.69</td>
<td></td>
<td>19.26</td>
<td>24.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 3</td>
<td>14.31</td>
<td></td>
<td>21.92</td>
<td>23.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 1</td>
<td>15.17</td>
<td>19.7</td>
<td>23.59</td>
<td>25.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 2</td>
<td>14.70</td>
<td></td>
<td>24.03</td>
<td>25.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 3</td>
<td>14.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Sample 1</td>
<td>16.73</td>
<td>18.06</td>
<td>20.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 2</td>
<td>15.11</td>
<td>17.8</td>
<td>23.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 3</td>
<td>17.33</td>
<td>19.03</td>
<td>21.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Sample 1</td>
<td>12.94</td>
<td>15.6</td>
<td>15.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 2</td>
<td>10.09</td>
<td>14.8</td>
<td>19.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 3</td>
<td>12.80</td>
<td>15.05</td>
<td>18.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>Sample 1</td>
<td>11.91</td>
<td></td>
<td>15.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 2</td>
<td>10.09</td>
<td></td>
<td>19.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 3</td>
<td>12.80</td>
<td></td>
<td>18.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7th, 14th & 28th day Split Tensile Strength

SPLIT TENSILE STRENGTH TEST:

GENERAL

Split tensile strength of concrete using Bagasse ash as Partial Replacement in Cement and coir fibre were added with concrete and compared with Ordinary mix.
The split tensile strength values using bagasse ash and coir fibre as a average value at the age of 7th day 7.78, 6.99, 4.09, 4.21 at 14th day 8.16, 8.67, 8.63, 7.23 and 28th day 9.54, 10.43, 9.76, 8.61N/mm² respectively. It can be seen from the results that there is a good amount of enhancement in the tensile strength of bagasse ash specimen upon the addition of coir fibres. The results indicate that the 3% is the optimum percentage of volume of fibres.

CONCLUSIONS

From the experimental study it can be said that the replacement of BAGASSE ASH as 3% and additional of COCONUT COIR FIBRE in the concrete as significantly increased. The compressive tensile strength of partially replaced concrete were performed better in all strength test. Comparing with the strength of conventional concrete. The partially replaced concrete performed in all test.

REFERENCES


[12] M.S.SHETTY, “Concrete technology”


