DESIGN AND FABRICATION OF SELF BALANCING ROBOT

Ajith.H¹, Dr. Sengottuvel.P²

1 Student, Department of Mechatronics Engineering
Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India.
Email: 0809rdhanasekar@gmail.com

2 HOD, Department of Mechatronics Engineering
Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India.
Email: hodmechatronics@bharathuniv.ac.in

Abstract:
This work describes the design and implementation of a self-balancing two-wheeled robot. The system is similar to the classical unstable, non-linear mechanical control problem of an inverted pendulum on a cart. This project derives the linearized system dynamics equations and approaches the control problem, of stabilizing the robot, using an Arduino system and driving motors. The controller manages to reject disturbances and stabilize the system using only a gyroscope and an accelerometer.

Keywords — pid controller, sensor imu board, arduinuno board, l293d driver.

I. INTRODUCTION
Planning a self-offsetting robot with exceptional capacities has turned into a pattern nowadays for an assortment of all inclusive human utilization. It likewise fits well with the necessities and nature of the human way of life. Various structures and uses, self-adjusting robots have been planned and are currently in the market around the world.

A self-adjusting robot contains three principle parts including sensors, legitimate handling unit and actuator. In this task, a robot that can keep up an upstanding and adjusted situation on a stage is structured and created. The robot comprises of Inertial

II. BLOCK DIAGRAM
The way toward executing this venture is very testing since it includes a few stages which incorporate understanding the fundamental hypotheses, planning the robot just as the PID controller. To make the procedure efficient, a Gantt Chart has been defined. Gantt Chart is significant so as to finish this undertaking on schedule. It begins with talking about with chiefs on the subject for the undertaking, goals, scopes and related things. Concentrate on the writing is additionally arranged in the Gantt Chart. Before continue the to the PID controller configuration stage, it is critical to figure out how to utilize the Simulink Matlab, which is additionally expressed in the outline.

III. ARDUINO UNO BOARD

The main controller for this project is Arduino Uno which uses Atmel Atmega328 microcontroller as it combines 32KB ISP flash memory with read-while-write capabilities, 1KB EEPROM, 2KB SRAM, 23 universally useful I/O lines, 32 broadly useful working registers, three adaptable clock/counters with look at modes, inner and outer intrudes on, sequential programmable USART, a byte-situated 2-wire sequential interface, SPI sequential port, 6-channel 10-piece A/D converter (8-directs in TQFP and QFN/MLF bundles), programmable guard dog clock with inside oscillator, and five programming selectable power sparing modes.

Arduino is an open-source gadgets prototyping stage dependent on adaptable, simple to-utilize equipment and programming. It's proposed for specialists, fashioners, specialists, and anybody keen on making intuitive items or situations.

The open-source Arduino condition as appeared in Figure 3.10 makes it simple to compose code and transfer it to the I/O board. It keeps running on Windows, Mac OS X, and Linux. The earth is written in Java and dependent on Processing, avr-gcc, and other open source programming.
IV.L293D DRIVER

The Device is a solid incorporated high voltage, high ebb and flow four channel driver intended to acknowledge standard DTL or TTL rationale levels and drive inductive burdens, (for example, transfers solenoids, DC and venturing engines) and exchanging power transistors.

To rearrange use as two scaffolds each pair of channels is furnished with an empower input. A different inventory info is accommodated the rationale, permitting activity at a lower voltage and inner cinch diodes are incorporated. This gadget is appropriate for use in exchanging applications at frequencies up to 5 kHz.

The L293D is collected in a 16 lead plastic bundle which has 4 focus pins associated together and utilized for warmth sinking.

The L293DD is collected in a 20 lead surface mount which has 8 focus pins associated together and utilized for warmth sinking.

V. PID CONTROL ANALYSIS

The IMU sensor gives the data and target directions as sources of info and makes, in outcome, yield sign to drive the Robot actuators (the engines in our model) so as to control the framework. We are utilizing a PID controller (Proportional + Derivative + Integral). This kind of control has 3 constants to modify kP,kD,kI.

The PID what to quantify (the "Info") ,where you need that estimation to be (the "Setpoint"), and the variable you wish to acclimate to get that going (the "Yield"). The PID at that point changes the yield attempting to make the information equivalent the setpoint.

kP is the Proportional part and is the primary piece of the control, this part is relative to the blunder.

kD is the Derivative part and is applied to the derivative of the error. This part depends on the dynamics of the system (depends on the robot,´s weight motors, inertias…).
The last one, kI is applied to the necessary of the blunder and is utilized to decrease consistent mistakes, it resembles a trim on the last yield (think in the trim fastens on a RC vehicle directing wheel to cause the vehicle to go absolutely straight, kI evacuates the balance between the objective required and the real worth).

On B-ROBOT the guiding order from the client is added to the engines yield (one engine with a positive sign and the other with a negative sign). For instance if the client sends the directing order 6 to go to one side (from -10 to 10) we have to add 6 to one side engine esteem and subtract 6 from the correct engine. On the off chance that the robot isn’t pushing ahead or in reverse, the consequence of the guiding direction is a turn of the robot.

Here we can tune the estimations of kP ,kI, kD in Arduino software. In results we can make a bot adjusted position.

VI. RESULT AND CONCLUSION

Controlling of self-balancing robot using PID is not an easy one also the parameter and sensor taken into an account. Small tuning of these parameters makes a wide range of deviation in movement. Mechanical design plays a major role. A previous equation problem, flatness problem and in tuning the parameters has been solved and verified.

VII. REFERENCES


