
 International Journal of Engineering and Techniques - Volume 7 Issue 4, July-2021

ISSN: 2395-1303 http://www.ijetjournal.org Page 32

Pragmatic Analysis of Custom Jenkins Jobs’ Metrics Using

Prometheus and Grafana
Jayanth G1

1(Information Science Dept., R.V. College of Engineering, Bengaluru, India

jayanthg.is17@rvce.edu.in)

I. INTRODUCTION

The technique of software development is

continually evolving as software businesses

introduce faster updates and capabilities to market.

To have a competitive edge, development teams

ought to optimize their development workflow for

more speed, quality, efficiency, and reliability. To

do so, devOps teams implement CI/CD in order to

automate and accelerate the software delivery

lifecycle. The CI/CD workflow continuously

integrates and deploys code which benefits the

company as a whole [1].

Jenkins is a popular automation tool that

facilitates CI/CD, which is being used or adapted in

many software companies. A Jenkins job is a

runnable task with a specific objective that is

controlled by Jenkins. The Jenkins pipeline consists

of a set of plugins that help in the CI/CD process,

handling integration and deployment of code. For

each job that is created, Jenkins stores related

metadata within a directory named after the job.

In large companies, the Jenkins resources are

more often exploited by high resource-intensive

jobs. Depending on the importance of such jobs,

they can be flagged for decommissioning.

This paper describes how various resource

utilization parameters like average build time, size

of GitHub repository, the total number of runs,

recent runs of job, inactive and periodically

scheduled jobs can be extracted from Jenkins’

metadata using Python and exposed as Prometheus

metrics. These metrics can then be queried using

PromQL and visualized using Grafana.

The visualization can be studied to scrutinize

resource-intensive jobs for decommissioning,

thereby reducing the load on Jenkins’ server.

II. LITERATURE SURVEY

A. B. Brazil, “Prometheus: Up & Running”

This book [2] gives a hands-on introduction to

Prometheus' most significant features, such as

alerting and dashboarding, metric gathering from

third-party systems using exporters, Prometheus

Query Language and direct code instrumentation. It

also includes instructions for setting up Prometheus,

the Node exporter, and the Alert manager, as well

as a demonstration of how to utilise them for

application and infrastructure monitoring.

B. N. Sabharwal, P. Pandey

RESEARCH ARTICLE OPEN ACCESS

Abstract:

 CI/CD, in software development, is the process of continuous integration (CI) and continuous delivery/deployment

(CD) of code. By imposing automation in the construction, testing, and deployment of applications, CI/CD facilitates

development and operations (DevOps) activities and teams. Prometheus is a popular open-source alerting and monitoring

software that allows flexible queries via its query language, PromQL. Grafana is one of the widely used open-source tools that

can be hooked up with Prometheus’ time-series database for metric analytics and visualization. This paper explains a

comprehensive approach of extracting, creating, and pushing custom parameters associated with Jenkins jobs as metrics to

Prometheus using Python language, filtering them using Prometheus Query Language (PromQL), and visualizing them using

Grafana dashboards. These metrics can also serve as a purpose in determining high resource-intensive jobs.

Keywords — Continuous Integration, Continuous Delivery/Deployment, DevOps, PromQL, Prometheus, Grafana,

Jenkins, cron expression, GitHub.

http://www.ijetjournal.org/

 International Journal of Engineering and Techniques - Volume 7 Issue 4, July-2021

ISSN: 2395-1303 http://www.ijetjournal.org Page 33

This chapter [3] gives readers step-by-step

instructions on how to use PromQL. PromQL

(Prometheus Query Language) allows users to

query real-time data and conduct various analyses,

aggregations, and operations on it.

C. L. Chen, M. Xian, and J. Liu

This paper [4] describes the design and

implementation of a comprehensive, intelligent, and

efficient monitoring system that uses Prometheus to

collect the monitoring data of OpenStack cloud

platform and Grafana to display the monitoring data

in real time. It also explains how the system can

effectively improve the reliability and stability of

OpenStack cloud platform through testing.

D. M. Shahin, M. Ali Babar and L. Zhu

This paper [5] aims to conduct a comprehensive

evaluation of the state of the art in continuous

practises in order to classify methodologies and

tools, identify problems and practises, and identify

research gaps. It also demonstrates that both

greenfield and maintenance projects have benefited

from ongoing procedures.

E. I. Nurgaliev, E. Karavakis and A. Alberto

This paper [6] intends to investigate novel

visualisation techniques in order to improve

dashboards. It explains the use of tools like Kibana,

Grafana, and Zeppelin to create new dashboards for

the authors' research organisation (CERN) using

data stored in ElasticSearch and Hadoop

Distributed File System (HDFS).

F. V. Armenise

This paper [7] shows how Jenkins developed

from a pure CI platform to a CD platform,

embracing the design trend of automating not only

the product build but also the release and delivery

process. The goal of this paper is to not only present

Jenkins as a CD hub, but also to highlight the

challenges that still need to be addressed in order to

strengthen Jenkins' tracking functionalities.

III. METHODOLOGY

A. Extracting parameters for identifying associated

resource-intensive jobs

Before Jenkins stores jobs metadata information

within a root directory with the path ~/.jenkins by

default [8]. Each job that has a build history is

present within the jobs sub-directory, which

consists of a directory with its name, containing

configuration and other information.

The config.xml file within each job sub-directory

can be used to identify cron expressions present, the

corresponding GitUrl of the job and the type of job.

The cron expression can be parsed according to the

syntax to obtain the number of runs of the job in

one year. The GitUrl can be used to get the

corresponding repository size via REST API

provided by GitHub.

The latest subfolder consists of details of the latest

successful build. The build.xml file within the

folder consists of the start timestamp of the build.

This can be used to identify jobs that are inactive

for more than a certain number of days.

The builds sub-directory contains information on all

the build versions completed so far, for a given job.

The build.xml within each build file consists of the

duration and start timestamp of the build. The

average build time, the total number of runs, and

number of recent runs could be hence found easily.

An effective load considering average build time

and frequency is calculated.

All these parameters thus calculated can then be

exposed as Prometheus metrics, which is explained

in the following sub-section.

B. Exposing parameters as Prometheus metrics and

visualization using Grafana

The following figure explains the process of
visualization using Grafana.

Fig. 1. Visualization of exposed metrics and decommissioning of high

resource utilization jobs

http://www.ijetjournal.org/

 International Journal of Engineering and Techniques - Volume 7 Issue 4, July-2021

ISSN: 2395-1303 http://www.ijetjournal.org Page 34

The parameters obtained are termed results.
There are mainly four types of metrics provided by
Prometheus [1]:

• Counter

• Gauge

• Histograms

• Summary

Since all the parameters are numerical, Gauge
metric suits best for the same. The Prometheus
client provided as a python library is used to create
and instantiate Gauge metrics using the various
parameters [1]. An HTTP server is set up on a
specific port for exposing the metrics, and another
HTTP endpoint is used to run Prometheus.
Prometheus is configured to listen to the endpoint
and pull the exposed metrics.

A graph is set up within Grafana dashboard panel

for each metric using PromQL aggregate functions

and sorted. The metrics thus visualized are studied

and high resource-intensive jobs are flagged for

decommissioning.

IV. IMPLEMENTATION AND RESULTS

• The A regex to match all kinds of cron
expression within config.xml file is used to
find the same if any. The frequency of cron
expressions is calculated based on the syntax
shown in Fig. 2 [9].

Fig. 2. Nature of cron syntax

• Another regex is used to look for GitUrl in
the same file which is used as a parameter to
get the Git repository size via REST API.

• The start xml tag within build.xml of the
latest sub-directory can be searched for to
the find timestamp of the latest build. If the
time difference between this timestamp and

the current timestamp is more than certain
time period, such job is termed as inactive.

• The number of directories that are numbered
within ‘builds’ sub-directory gives the total
number of runs. The start timestamps of
builds which fall under the past certain
number of days are considered for recent
number of runs.

• The duration xml tag within the build.xml
file of all the builds can be searched to find
build times in milliseconds. These build
times of all the builds are averaged out to
calculate the average build time of a
particular job.

• The cron job frequency and average build
time parameters are multiplied to find an
approximation of effective resource
utilization of cron jobs.

• The python package “Prometheus_client” is
used to start the HTTP server for Promethes
and set up Gauge metrics.

• Gauge metric is used for each calculated
parameter, which is initialized with job name
as a label, and parameter as the value.

• A separate HTTP server is set up to run the
Python script once GET request is sent.

• Prometheus is configured to listen on the
above HTTP endpoint using
‘prometheus.yml’ config file [10].

• Grafana dashboard is created with graphs for
visualization for all metrics. The panel of
each graph is configured using PromQL
“sum” aggregate function over the label
containing the job name. The result is sorted
in descending order.

The following views are obtained:

Fig. 3. Total runs

http://www.ijetjournal.org/

 International Journal of Engineering and Techniques - Volume 7 Issue 4, July-2021

ISSN: 2395-1303 http://www.ijetjournal.org Page 35

Fig. 4. Recent runs

Fig. 5. Average build time of jobs (seconds)

Fig. 6. Inactive jobs

Fig. 7. Git repository size (Kilobytes)

Fig. 8. Cron job effective load

V. CONCLUSIONS

With the near-ubiquitous nature of CI/CD

practice in software development, performing

regular clean-up tasks is necessary for optimal

resource utilization.

Jenkins is the CI/CD tool of choice in many

software companies that strive to have a

competitive edge in the market. Although Jenkins

provides a Prometheus plugin to perform server

health monitoring, it is preferable to create custom

metrics to analyze various other parameters that can

be extracted from the Jenkins root directory. Since a

huge number of jobs run every second in a large

organization, Jenkins’ server resources can easily

be exploited if not used efficiently and effectively.

This paper provides a comprehensive

walkthrough of the extraction of parameters,

conversion of parameters into Prometheus metrics

using Python and visualizing them using PromQL

queries and Grafana dashboards. The results can

also serve as a reference to server maintenance

personnel to flag and decommission high resource-

intensive and obsolete Jenkins jobs.

REFERENCES

1. Thoughtworks Incorporation, “Continuous Integration”,

Accessed on :May 31, 2021. [Online]. Available:

https://www.thoughtworks.com/es/continuous-integration

2. B. Brazil, “Prometheus: Up & Running”, O’Reilly Media,

Inc, 2018.

3. N. Sabharwal, P. Pandey. “Working with Prometheus

Query Language (PromQL).” In: ‘Monitoring

Microservices and Containerized Applications.’ Apress,

Berkeley, CA, 2020. https://doi.org/10.1007/978-1-4842-

6216-0_5

http://www.ijetjournal.org/

 International Journal of Engineering and Techniques - Volume 7 Issue 4, July-2021

ISSN: 2395-1303 http://www.ijetjournal.org Page 36

4. L. Chen, M. Xian and J. Liu, "Monitoring System of

OpenStack Cloud Platform Based on Prometheus", 2020

International Conference on Computer Vision, Image and

Deep Learning (CVIDL), 2020, pp. 206-209.

5. M. Shahin, M. Ali Babar and L. Zhu, "Continuous

Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and Practices",

in IEEE Access, vol. 5, pp. 3909-3943, 2017

6. I. Nurgaliev, E. Karavakis and A. Alberto. “Kibana,

Grafana and Zeppelin on Monitoring data”, The

European Organization for Nuclear Research (CERN),

2016.

7. V. Armenise, "Continuous Delivery with Jenkins: Jenkins

Solutions to Implement Continuous Delivery," 2015

IEEE/ACM 3rd International Workshop on Release

Engineering, 2015, pp. 24-27

8. Atlassian Confluence, “Administering Jenkins”, Aug. 2019.

Accessed on: June 1, 2021. [Online]. Available:

https://wiki.jenkins.io/display/JENKINS/Administering+Je

nkins

9. R. Boyett, “Cron Job: A Comprehensive Guide for

Beginners 2021”, May 2021. Accessed on: June 1, 2021.

[Online]. Available:

https://www.hostinger.com/tutorials/cron-job

10. Prometheus Authors, The Linux Foundation, “Getting

started”, Prometheus version 2.27. Accessed on: June 1,

2021. [Online]. Available:

https://prometheus.io/docs/prometheus/latest/getting_start

ed.

http://www.ijetjournal.org/

