
International Journal of Engineering and Techniques - Volume 8 Issue 3, June 2022

ISSN: 2395-1303 http://www.ijetjournal.org Page 386

Design And Implementation of A MIPS Processor

with Signal Processing Extensions On FPGA

Heba C Josy∗, Kelvin Tony†, Krishnendu R‡ and Liz Abraham§
Rajagiri School of Engineering and Technology

Email: ∗hebajosy98@gmail.com, †kelvintony2@aol.com, ‡kichuravi28@gmail.com, §lizabraham98@gmail.com

Abstract—The purpose of this paper is to design a single cycle

central processing unit with signal processing extensions in an

FPGA. The processor will be able to handle different instructions,

including R-type, I-type and J- type. To the existing instruction
set, we are going to include signal processing functions viz. Fast

Fourier Transform (FFT). This design tries to meet the faster
processing demand in consumer electronics. Also with this design

easy debugging of architecture is possible and therefore making
it an ideal teaching tool.

Index Terms—Fast Fourier Transform, twiddle factor, Micro-

processor without Interlocked Pipelined Stages

I. INTRODUCTION

MIPS Technologies in the United States developed the

Microprocessor without Interlocked Pipelined Stages (MIPS)

which uses the reduced instruction set computer (RISC) ar-

chitecture. MIPS architecture was first developed by John L.

Hennessy at Stanford University and proved that performance

can be improved greatly with their prototype microprocessor

with five-stage execution pipeline and cache controller which

could be integrated onto a single silicon chip.

One of the key features of the MIPS architecture is the

regular register set. It consists of the 32-bit wide program

counter (PC), and a bank of 32 general-purpose registers called

r0-r31, each of which is 32-bit wide. All general-purpose

registers can be used as the target registers and data sources

for all logical, arithmetical, memory access, and control-

flow instructions.MIPS is a load or store architecture (also

known as a register-register architecture), except for the load

or store instructions used to access memory, all instructions

operate on the registers. This work presents a hardware design

architecture of a 32 bit single cycle MIPS processor along with

signal processing extensions(FFT). MIPS Processor consists of

blocks like control unit, program counter, data memory, ALU,

register file, adder,multiplexers,sign expansion etc.

II. IMPLEMENTATION OF SINGLE CYCLE

DATAPATH

The single-cycle micro-architecture proposed here executes

an entire instruction in one cycle. It follows the standard

design principles of MIPS processor and therefore making

it easy to explain and has a simple control unit. Because

it completes the operation in one cycle, it does not require

any non-architectural state. However, the cycle time is limited

by the slowest instruction. The main state elements used in

this processor are control unit, program counter, data memory,

ALU, register file, adder, multiplexers, sign expansion etc.

A. State Elements

The state elements in the proposed design include the basic

building blocks of the design and they consists of the program

counter, the assorted registers and the ALU. The proposed

design makes use of the standard state elements of the MIPS

architecture to maintain the simplicity and efficiency. The new

states are calculated from the current states using the different

combinational logic between the various state elements.

1) Program counter: The program counter, a register, con-

tains the address location of the next instruction that is to

be executed. When the current instruction gets fetched by the

processor, the program counter gets incremented by one. When

the fetch stage is completed, the program counter calculates

and stores the address of the next instruction in the sequence.

The program counter is set to 0 when the processor is restarted

or is reset. The program given to the processor to execute is

usually a set of ordered instructions and each instruction is

stored in an address in the memory and since the program

counter stores the address of the next instruction some refers

the program counter as address pointer.

2) Instruction Register: Every instruction to be executed

by the processor is stored in the instruction register. The

instruction is stored in the instruction register while the control

unit decoded the instruction and finally executed which might

be a several step process. The outputs of the IR are given to

the control unit to generate various timing and control signals

to different state elements involved in the instruction execution

stage. The instruction register is loaded with instruction which

is pointed by the program counter.

3) Register File: The proposed design has a 32-element 32-

bit register file. It consists of one write port and two read ports.

The A1 A2 are each 5-bit port each specifying the address of

source operands. RD1 and RD2 outputs data read from any of

the 32-bit registers. A3 which is the write port takes a 5-bit

address input and writes the data in the WD on the rising edge

of the clock to the specified register if the WE3 is enabled.

4) Data Memory: The data memory implemented here

consists of one read port and one write port. When the write

enable, (WE), is set to 1, the data is written into the specified

address A on the clocks rising edge. The address A is read

onto RD when the write enable is set to 0. The data memory,

register file and the instruction memory are all read using

combinational logics. That is, if the address changes, the new

data appears at RD directly; the clock is not involved in these

operations. The data memory is written on the rising edge of

http://www.ijetjournal.org/
mailto:hebajosy98@gmail.com
mailto:kelvintony2@aol.com
mailto:kichuravi28@gmail.com
mailto:lizabraham98@gmail.com

International Journal of Engineering and Techniques - Volume 8 Issue 3, June 2022

ISSN: 2395-1303 http://www.ijetjournal.org Page 387

Fig. 1. Single Cycle Datapath

the clock cycle. The different signals i.e. the write enable, data,

and address must be setup before the clock edge and after the

clock edge it should remain stable.

III. FAST FOURIER TRANSFORM

A. Introduction

Fast Fourier Transform (FFT) is one of the most important

and widely used algorithms in the signal processing domain.

The signal processing applications need high throughput, and

therefore the goal is to reduce the circuit area and then to

reduce the delay. The minimization of the power consumption

and the amount of hardware used is crucial to the reduction

of FFT complexity. James Cooley and John Tukey first in-

troduced the concept of FFT. The Discrete Fourier Transform

(DFT) of a sample, or its Inverse Discrete Fourier Transform

(IDFT) can be found using the FFT butterfly algorithm. The

time domain to frequency domain and vice versa conversions

are done by Fourier analysis. The DFT is obtained by decom-

posing the sequence of values or samples into its components

of different frequencies.

FFT is widely used for many applications in engineering,

science, and mathematics which include areas such as : com-

munications, signal processing, instrumentation, biomedical

engineering, numerical methods, sonic and acoustics, and

applied mechanics. It is the most important algorithm in the

speech processing methods. The demand for the FFT transform

is still growing.

Fig. 2. Butterfly Structure

B. Radix-2 DIT FFT

When length 8 is the input to the FFT the output data is

also in the order of 8. It can be represented in the form of

a butterfly diagram. The twiddle factor computation is done

at each stage of buttery diagram. The input sequence taken

in a shuffled order in the DIT algorithm. Here the sequence

for which DFT is found is successively divided into smaller

sequences and the DFTs of the sub-sequence are combined.

For DIT the input is bit reversed, while output is in the original

order. The processing of the data is same as in 16-bit radix-2

DIT FFT, the only difference is that the length changes. The

number of inputs increase the butterfly units for processing

also increases.

Depending on the number of bits, the number of stages

and butterflies can be decided. The number of complex mul-

http://www.ijetjournal.org/

International Journal of Engineering and Techniques - Volume 8 Issue 3, June 2022

ISSN: 2395-1303 http://www.ijetjournal.org Page 388

2

Fig. 3. Single cycle datapath with FFT extension

tiplications is N log2 N and the number of complex additions

is N log2 N . FFT method recursively breaks down a discrete

fourier transform of composite size n = rm into r smaller

transforms of size m. These smaller discrete fourier transforms

are then combined via size-r butteries, which themselves are

DFTs of size r (performed m times on corresponding outputs

of the sub-transforms) pre-multiplied by roots of unity known

as twiddle factors. This is known as the decimation in time

case; the steps can also be performed in reverse this process is

known known as the decimation in frequency. Figure 2 shows

the butterfly structure for FFT calculation. The randomness

of large arrays of partially random numbers can be improved

by the butterfly algorithm. Both the decimation in time and

decimation in frequency are complementary and has the same

amount of complexity.

IV. IMPLEMENTATION OF FFT IN THE DATAPATH

The block diagram in figure 3 shows the proposed architec-

ture with the FFT unit. When the FFT instruction is received

the control unit enables the FFT buffer module, and the 8

inputs to the FFT block is stored in the buffer and then given

to the FFT block where the calculation happen.

The FFT block (figure 3) mainly consists of a module for

fixed point addition fixed point multiplication and an inverter.

Separate addition and multiplication blocks(fixed point) are

used here to improve the performance. a, b, c etc are the inputs

to the FFT block and A, B, C, etc and Ai, Bi, Ci etc are the

real and imaginary parts of each FFT output respectively.

The 8 FFT outputs are calculated using the equations of

FFT(butterfly algorithm). Ideally the inputs to the FFT block

can be given from an external source. In the proposed design

the 8 inputs are stored in the instruction memory to test the

functionality of the design. We have optimized the structure of

this FFT by removing two redundant parts, that is we directly

assign outputs Ai and Ei values, where Ai is the imaginary

part of the first FFT output and Ei is the imaginary output of

the fifth FFT output. After the computations are completed

the outputs are stored in the data memory (in the last 16

addresses)for verifying.

Fixed point arithmetic is used to here to improve speed and

maintain the simplicity of the design. The fixed point numbers

implemented here has 32 bits. The 32nd bit is the sign bit,

where 0 represents a positive number and one represents a

negative number. The bits from 30 to 15 represents the digits

on the left side of the decimal point and the bits from 14 to

http://www.ijetjournal.org/

International Journal of Engineering and Techniques - Volume 8 Issue 3, June 2022

ISSN: 2395-1303 http://www.ijetjournal.org Page 389

Fig. 4. Simulation results

0 represent the fractional part.

The proposed design was simulated using Xilinx Vivado and

the functionality was verified. The figure 4 shows the output

of 8 point FFT with the inputs 1,1,1,1,1,1,1 and 3.

V. CONCLUSION

A single cycle central processing unit supporting MIPS

ISA can be designed and tested using this architecture.This

processor is capable to handle different instructions including

R-type, I-type and J-type. We also added a signal processing

extension to the existing instruction set. The extension used

is Fast Fourier Transform (FFT). Fast Fourier Transform is a

computer algorithm used in digital signal processing (DSP)

to modify, filter and decode digital audio, video and images.

The processor was synthesized using Xilinx ISE platform. It

is very rare for a modern processor unit to have a single-

cycle design. The reasons for this are the long cycle times,

the wasted resources, and the large amount of wasted time in

each cycle. It is for this reason that single-cycle processors

work as a good teaching tool, but are not often employed in

actual designs.

VI. FUTURE SCOPE

All the basic arithmetical operations can be implemented

in this processor. And in addition, we had also implemented

the FFT function. In future, we can also further develop this

into Short Time Fourier Transform. This transform helps in

frequency scaling, cross synthesis etc.We can also advance

our project as an IP Core. As essential elements of design

reuse, IP cores are part of the growing electronic design

automation (EDA) industry trend towards repeated use of

previously designed components. The IP Core can improve the

processing speed of data-intensive functions. Our processor

can also be implemented as a single chip by implementing

pipeline and parallel architecture.

ACKNOWLEDGMENT

Many thankful to the College management for providing

an environment where we could develop and improve our

skills and thereby better ourselves emotionally and profession-

ally.We are indebted to our Seminar Guide, Mr. Karunakara

P Menon, Asst. Professor, Department of Electronics and

Communication Engineering for the constant help and support.

REFERENCES

[1] M. E. A. Ibrahim, M. Rupp , and H.A. H. Fahmy, Power Estimation

Methodology for VLSI Digital Signal Processors, in Proc. ACSSC 08,
2008, paper 169593.

[2] K. Anand and S. Gupta, Designing Of Customized Digital Signal

Processor B.T. Thesis, Indian Institute of Technology, Delhi, May, 2007.

[3] Gautham P, Parthasarathy R. Karthi, Balasubramanian. ”Low Power

Pipelined MIPS Processor Design,” in the proceedings of the 2009, l2(h

international symposium,2009 pp. 462-465.

[4] Harpreet Kaur, Nitika Gulati, ”Pipelined MIPS With Improved Datap-
ath”, IJERA, Vol. 3, Issue 1, January -February 2013, pp.762-765

[5] K. Karuri and R. Leupers, Application Analysis Tools for ASIP De-

sign: Application Profiling and Instruction-set Customization, 1st ed.,

Springer, 2011

[6] J. Becker, M. Glesner, A Parallel Dynamically Reconfigurable Archi-

tecture Designed for Flexible Application-Tailored Hardware/Software
Systems in Future Mobile Communication, The Journal of Supercom-

puting, vol.19, no.1, 2001.

[7] T. Ferdous, Design, Synthesis and FPGA-based Implementation of a 32-

bit Pipelined Digital Signal Processor, International Journal of Scientific

and Engineering Research (IJSER), vol. 3, issue 7, 2012.

[8] M. R.S. Balpande, M.R.S. Keote, Design of FPGA based Instruction
Fetch Decode Module of 32-bit RISC (MIPS) Processor, in Proc.

ICCSNT 11, 2011, paper 10.1109, p. 409.

[9] Neenu Joseph. Sabarinath.S. ”FPGA based Implementation of High

Performance Architectural level Low Power 32-bit RISC Core”, 2009
IEEE.

[10] David Harris, Sarah L. Harris Digital Design and Computer Architecture

2013.

http://www.ijetjournal.org/

